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A new method is introduced for describing the collisional term in the framework of a par- 
ticle scheme. The equations of motion of the particles contain an additional term which takes 
into account the collisions. Numerical techniques are shown to compute this extra term and 
to solve the equations. Exact results concerning stability and consistency of the schemes for 
the diffusion equation are derived. Some numerical results for the one-dimensional case are 
reported. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Particle methods have been extensively used for solving a large variety of 
problems in many different areas [ 1, 111. There is an increasing interest in treating 
collisional equations. In plasma physics the statistical effects of Coulomb collisions 
among ionized particles is described by a Fokker-Planck operator which intro- 
duces a “friction” and a “diffusion” in velocity space [7]. In semiconductor physics 
the collisions between the carrier and the lattice are described by a linear integral 
operator acting in the wave vector space [23]. Binary collisions in rarefied gas are 
described by the Boltzmann equation, through a nonlinear integral collisional 
operator [6]. 

The present particle schemes usually incorporate collisions by making a Monte 
Carlo simulation of the collision process [S, 161. This approach is quite general 
and it reflects the physics of the process. The main drawback of the method is that 
it introduces large statistical fluctuations and an extremely large number of particles 
is required for an accurate simulation. Other more mathematical approaches have 
been proposed by several authors [X, 10, 13, 19, 171. In [ 191, for example, position 
and velocity of the “macroparticle” satisfies the usual equation of motion of the 
collisionless case and the collisions affect the “weight” of the particles transferring 
mass from one particle to another. 

Our approach is somehow different from the previous ones. The idea underlying 
the method is the following: we approximate the initial distribution in the phase 
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space with a set of equi-weighted particles for each species. Then iru’e move the par- 
ticles according to equations of motion which are the equations for the ~o~~is~~~~ess 
case plus an additional term which is responsible for the change in the density 
function due to collisions. The method is a Lagrangian description of the kinetic 
equation and has the advantage of being deterministic and of automat~~a~~y rezonkng 
the irregular grid which has been determined by the particles. In this respect the 
technique has some resemblance with moving grid methods 12, 227 and moving 
finite element method 115, 9, 141. The other advantage is that the co~t~~~ut~~~ of 
the collisions is described by an additional term in the equations of motion t 
be added to an existent code which treats the collision 

Tn these paper we illustrate the general features of od and make some 
applications to one-dimensional space homogeneous problems. In the case of the 

ion equation we show some rigorous results on the stability and consistency 
e method. In a following paper, we shall treat rn~~t~-d~rne~s~o~a~ space 

inhomogeneous case and make applications to a variety of colhsional operators. 
The plan of the paper is the following: in Section 2 we descri 

derive the equations of motion. In Section 3 we describe the one 
homogeneous case and show how to treat boun ary conditions and source terms 
(particle “creation” and “annihilation”). In Secti n 4 we apply the method to the 
one-dimensional heat equation and show some numerical results on the rate of 
convergence of the scheme. In Section 5 we show some result on the stability 
consistency of the method applied to the diffusion equation. in Section 6 we a 
the method to simplified models of a Fokker-Hansk equation, a linear integro- 
differential equation (master equation) and a oltzmann-like elquation (Kac 
equation). Finally, in Section 7 we draw conclusions. 

2. DERWATI~N OF THE 

We consider a generic kinetic equation for a single specie: 

(2%) 

wheref(x, v, t) is the density function in the phase space, F is the acceleration fiel 
and I[f] is a generic collisional operator. 

We associate to the equation the initial condition: 

f(x, v, 0) =,Mx, VI. 12.2) 

The acceleration field F may be an external field or a functional of,fi Zn the latter 
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case we must supplement Eq. (2.1) with an equation relating F with f: In the 
Vlasov-Maxwell case, for example, it is 

F=;(E+vxB), (2.3) 

and Eq. (2.1) is coupled with Maxwell’s equations for E and B. 
In the collisionless case, Eq. (2.1) reduces to the Vlasov equation: 

$+...+F-V,f=O. 

It can be written in the “characteristic form,” 

df dt'o, 

on the “characteristic lines” G+? defined by: 

dx 
-=y 
dt ’ 

(2.4) 

(2.5) 

(2.6) 

The solution of the Vlasov equation is given in a parametric form, 

.0x, v, t) =.m”, vO), 
x=x(x0, v”, t), v = v(xO, v”, t), 

(2.7) 

where the expressions for x and v are obtained by integrating equations (2.6). With 
particle methods one looks for a solution of Eq. (2.4) of the form: 

f&x, v, t) = =f wi 6(x - Xi) qv - Vi). P31 
i=l 

This distribution is a weak solution of Eq. (2.4) p rovided xi(t) and vi(t) satisfy the 
characteristic equations (2.6). The initial conditions for equations (2.6) are the 
points (xy, VP), which are determined by approximating the initial distribution (2.2) 
in an “optimal” way. Equations (2.6) are then solved numerically and the field F 
is evaluated self-consistently at each time step. The distribution of points x,(t), v,(t), 
interpreted as a discrete measure, is an approximation of the absolutely continuous 
measure with density f(x, v, t). There are rigorous estimates on the error between 
the numerical discrete solution and the exact solution, which are based on a proper 
metric in the space of measures [lS, 121. 
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The transformation (2.7) in particular, preserves integrals: 

d z s f(x, v, t) dx dv = 0, 
Y(f) 

(2.9) 

for any volume Y in the phase space moving accordmg to Eqs. (2.6). 
We shall use this property as a starting point for the derivation of our method. 

Let us consider the full equation (2.1). We look for a t~a~sf~rmatio~ 

x =x(x0, v”, I), 

v = v(xO, VO, t), 
(2.10) 

such that the property (2.9) is satisfied, for each volume Y”(t) of points moving 
according to (2.10), with constant (x0, v”). 

By applying the transport theorem to (2.9) we obtain 

= f .1,) f(x(xO, v”, t), v(xO, v”, t), t)J dxO dvO 

=J” I( i’io) ~+V,/.-~iV,f.~)J+f~jdr”dv” 

=il,o~[~+v~.(l~)+v”.(fp 

where 

J= 3(x, v) 
i3(x0, v”) 

is the Jacobian of the transformation and 

av av 
2-t= at i x0. YO = const 

The relation 

(2.12) 

(2.13) 

dJ=J v .“+v it? 
dt i x at y- at 
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has been used. From the arbitrariness of $‘” it follows: 

Equation (2.1) can be written in the form 

;+ V,. (fv) + V,. (fF) = WI 

because V, .v = 0, V, . F = 0. Subtracting (2.14) from (2.15) we obtain 

(2.14) 

(2.15) 

(2.16) 

The equations of motion are therefore 

ax 
-=v++,xA+h), 
at (2.17) 

aV 
z=F+j(VyxB+k), (2.18) 

where A and B are arbitrary vectors and (h, k) satisfy the equations: 

V;h+V;k= -Z[f], 

V,xh=O, V,xk=O. 

(2.19) 

(2.20) 

Equations (2.19)-(2.20) do not define uniquely the two fields h and k. If the 
operator Z[f] acts in velocity space (which is often the case) then a natural choice 
is 

h = 0, 

V, k = -Z[f]. 
(2.21) 

Equations (2.17)-(2.18) define a transformation of the form (2.10) that has the 
property (2.9). If such a transformation is computed then the functionf(x, v, t) can 
be reconstructed: from (2.11) it follows that 

f(x, v, t) =f(xO, v”, O)/J(xO, VO, t). (2.22) 

Such a transformation, of course, is not unique and this is expressed by the 
arbitrary quantities in Eqs. (2.17)-(2.18). Making a particular choice for the fields 
A, B, h, k merely means defining a particular parametriza.tion of the solution (2.22). 
This arbitrary nature could be used to make the more convenient choice in each 
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particular case. A choice which appears to be natural is an ix-rotational flow given 
bY 

conditions (2.21). 
If the case of no boundary in the velocity space equations (2.21) can be solved 

in terms of Green’s functions of the Laplacian operator, 

iL‘ 
k= -! 1(x, v’, t) dvfv’, /2.24) 

-30 

(2.25) 

(2.26) 

in the case, respectively, of one, two, and three dimensions in velocity s ere 
] is considered a function of (x, v, t). 
efore considering the numerical discretization of the method let us make a 

remark on the regularity of the transformation (2.10). Sup ose that f (x, v, e) is 
defined in a set Q x [O, T], where Q is an open set $2 G Rd (cI is the dimension of 
our phase space). Iff vanishes then the equations of motion have a divergent term, 
and the transformation (2.10) is no longer regular because the jacobian J diverges. 
Furthermore, the kind of singularity depends on the way f vanishes. In order to 
avoid this problem it is possible to regularize the tra~s~o~~atio~ in the fo^ol~owing 
way. Let 4(x, v, f) be a positive integrable function. Then we define a class of trans- 
formation of the form (2.10) imposing the property: 

witPl $(x, v, t)=f(x, v, t)+qqx, v, t). 
Then, proceeding in the same way as before, we get the equations of motion for 

x(x0, v”, t), $x0, v”, t) 

where (2.19) is replaced by 

V, . h + V, . k = -I[ f ] - ad/at, (2.19’) 
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Given the transformation, the function is reconstructed: 

f(x, v, t) = $(x0, v”, 0)/4x0, v”, t) - 4(x, v, t). (2.30) 

If Q is a compact domain then 4 can be a constant. If Q is unbounded then C$ 
can be chosen in such a way to control the singularity of the transformation. 

We mention here an alternative formulation of the equations, which has the 
advantage that it does not require the local evaluation of the function J: Let us 
consider a generic volume Y in the phase space and let us denote by (2, ?) the 
“center of mass” of such a volume: 

k j,. f(x, v, t) dx dv = s, xf(x, v, t) dx dv, (2.31) 

9 J( s x, v, t) dx dv = 
s 

vf(x, v, t) dx dv. (2.32) 
Y 

Suppose that all the points of -Y- move according to the transformation (2.10). 
Then, by taking the time derivatives of (2.31) and (2.32) we obtain, proceeding in 
a similar way as before, 

fj S,fdxdv= jygf(x,v, t)dxdv, 

$j~fdxdv=j~~/(x,v;t)dxdv, 

(2.33) 

(2.34) 

where Eq. (2.14) has been used. Here P = a(t) and 0 = G(t) and ax/t, h/t, defined 
in (2.13), are evaluated as functions of (x, v, t). Note that 

M, = 
J 

f(x, v, t) dx dv (2.35) 
v 

does not depend on time. Substituting (2.17))(2.18) and (2.23) into (2.33)-(2.34) 
gives the equations of motion, 

dS h 
-g=v+ 

Iv h(x, v, t) dx dv 

Mv ’ 
(2.36) 

Jy k(x, v, t) dx dv 

MY ’ 

where h and k, defined in (2.17)-(2.18), satisfy Eqs. (2.19)-(2.20) and 

p ~ !Y F(x, v, t) Ax, v, t) dx dv 
MY 

(2.37) 

We will discuss later how to obtain a numerical scheme from these equations. 
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General Considerations on the Discretization of the Equations 

The equations of motion of the particles are, from (2.17)-(2.18) and (2.21), 

where x,(t) = x(x:, VP, t), v,(t) =vj(xp, VP, t), Fi (Xi, vi, t), kj = kjx;, vi, 1); /; = 
j-(x,, vi, t), and {xp, vp}y= 1 is the initial location the particles. The dot denotes 
the time differentiation. In a particle scheme an approximation of the 
side of the equations is computed as a function of all the particle locations. T 
term F, can be computed in the usual way (particle-~a~t~~l~~ particle-mesh 
schemes, etc. [ 11, I] ). 

The new problem is the computation of ki and fi. This will be one of our main 
concerns. 

Let us consider first the space-homogeneous case. If 1 is an integral operator then 
its numerical values are computed as I[f(,,(v, t)], where& is a sum of S-distribn- 
tions of the form 

f,,,(v, t) = 5 WiJ(V -vi). 

The computation of I[fCN,(vi, t)] at each time step is a O(N2) computation. 
explicit expression (2.24)-(2.26) ( or similar expression for compact domains) ca 
used in order to compute k,. The overall computation is thus 

The value of the function fi can be reconstructed in different ways. Usually f, is 
obtained by taking the convolution of fCNj with some suitable base f~~~t~o~ 
(generally, a piecewise linear or quadratic function) [ 11, 1 j. An alternative 
approach is based on the relation between particle methods and quadrature for- 
mulas, as will be explained in a following paper. Voronoi diagrams seem suitable for 
handling the irregular mesh of the particles and have already been used in 2D 
hydrodynamical computations [3, 41. They also provide a discrete approximation 
of differential operators (laplacian, divergence, gradient) on the irregular mesh 
given by the particles, and this is particularly useful when the operator I contains 
differential terms. There are fast algorithms that create a 2D Voronoi diagram sn 
O(N log N) computations and update it in only Q(N) operations. By means of these 
diagrams and of an appropriate quadrature formula it is possible to compute an 
approximate expression for fi (taking care of open polygons). There are ~~~eres~~~~ 
physical cases wbere the phase space is bounded, as in the kinematic description of 
carriers in a crystal. In this case the physical domain of the “‘momentum” &k of the 
carriers can be restricted to the first Brillouin zone [23]. 

A possible way to overcome the problem of the unbounded domain is to use a 
mapping of Rd onto the unit cube [0, I]” and analyze the distribution function in 
the unit cube. 
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Once a system of ODES of the form (2.38)-(2.39) is obtained, a standard techni- 
que can be used to solve it numerically. In the general spatial non-homogeneous 
case, the problem can be treated according to the following fractional-step scheme: 

1. A regular grid in space is introduced which divides the domain into “cells.” 

2. The contribution of collisions is then computed separately in each cell and 
the particles are moved (in velocity) according to this term. 

3. The particles are moved according to the (collisionless) equations of 
motion. 

We are presently working on such a scheme, treating a diffusion operator and a 
linear integral operator. The results will be presented in a subsequent paper. 

3. THE ONE-DIMENSIONAL, SPACE HOMOGENEOUS CASE 

In this section we shall consider the initial-value problem, 

g= Kfl, (3.1) 

f(h 0) =fo(fJ), (3.2) 

where f is supposed to be a non-negative integrable function in R x [0, co) and 
I[f] is a generic collisional operator acting on j This is the simplest prototype of 
a collisional kinetic equation, where we dropped all the other terms. It is instructive 
to rederive the method in this simple case. We define a Lagrangian coordinate V 
in the following way: 

VE ” s _ m Au’, t) dv’. (3.3) 

If f is strictly positive, this relation is invertible. Suppose that this is the case and 
consider v as a function of V and t. Differentiating Eq. (3.3) with respect to t and 
V we obtain 

O=f(u, t)$+j;m;(v., t)du’, 

1 =f(v, t) Fv. 

Making use of (3.1) the “equation of motion” is written as 

(3.4) 

a0 -A= _- 
at 

;;/I I[f](u’, t) dv’. 
m 

(3.6) 
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A numerical scheme is obtained in the following way. Let 

i;;E s +m f(v, t) dv. (3.7) 
-m 

The quantity P is a constant if I[ f ] d oes not contain any net source term, i.e., if 

i’ I[h](v)dv=O 
R 

(3.8) 

for any function h(v) of the proper class. For the moment we sup 
the case. 

We define the initial position of the “particles,” 

where 

(3.10) 

The Jacobian avlaV is discretized as 

If I[ f ] is an integral operator, it is approximated by substituting to ,f a sum of 
irac distributions: 

The alternative scheme based on the evolution equations for the mean is 
obtained in the following way. Let us define the quantities ui, 6,: 

tii 1”’ f(v, t) dv = i“” vf(v, t) dv, i= 1, . ..) iv. (3.14) 
vi-1 u,-1 

Taking the time derivative of Eq. (3.141, integrating by parts and making use of 
Eq. (3.6) we obtain 

581'87,'2-3 
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and, in the evaluation of the integral, f(u, t) is substituted by 

Au, t) =; ,g 6(v - 6,(t)). 
z=l 

(3.16) 

In principle, Eqs. (3.15) can be solved only if uj( t) are known. In a numerical 
scheme we need to express vi as a function of Bi, in order to close the system of 
equations. Note that the “total momentum,” P E 1: z uf(u, t) dv, is exact when f is 
approximated by (3.16). The disadvantages of this formulation consist in the more 
complicated form of the equations of motion and in the need of a suitable 
approximation of ui in terms of Oj. 

Source Terms and Boundary Conditions 

In view of application of this method to other problems, we describe how to treat 
boundary conditions. Let us consider the initial-boundary value problem for the 
function f: [0, l] x [0, + co] + R: 

(3.17) 

f(% 0) = fo(fJ)> (3.18) 

.m t) = g(t), Al, t) = h(t). (3.19) 

Equation (3.6) becomes 

g=+ (k-S): (3.20) 

where 

k(u, t) E - j; I[f](u’, t) dv’, S = 
I 

” s(v’, t) dv’. (3.21) 
0 

At the initial time t = 0 the equation is described by No points defined by 

(i- ;)C= j;‘fo(u) dv, i = 1, . . . . No, (3.22) 

where C- ih fo(v) dv/N’. We discretize the time and define v;f and v&+ r: 

c g(f”)=(l;y-u;;)’ h(t”)= c (G+1-G)’ (3.23) 

Equation (3.20) is discretized in the form 

f);” ZZ IJ; + F;At, i=O , . . . . N” + 1, (3.24) 
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and 

If v ;’ ’ > 0 then we say that a new particle has been created at tbe left boundary. 
If V’I” < 0 then we say that the particle has been annihilated. A similar proce 
is applied at the right boundary. If d t is small enough then only one particle can 
be created or destroyed at a boundary per each time step. If bt is not small enough 
then this procedure can be generalized and more that one particle can be created 
or annihilated per time step. An application of this method will be shown in the 
ne section for the heat equation. 

e remark that particles are created or destroyed only at the boundary, even in 
presence of an internal source. This is because the information is carried by t 
relative distance between the “particles” and not by their absolute location 

4. THE DIFFUSION EQUATION: NUMERICAL RESLJLT~ 

e apply the method to the one-dimension diffusion equation. This a~~~i~atio~ 
is important for many reasons. It is a simple case for which exact results on 
consistency and stability can be obtained and it is a deterministic way of intro- 
ducing diffusion in a particle method (without changing the weights of the 
particles). 

As in the case of finite difference schemes, explicit schemes suffer a limitat~ 
the step size. The problem can be overcome by an implicit version of the m 
which guarantees unconditional stability. 

Let us consider the equation 

af a af -=- v- 
( 1 at ax ax ' (4.1) 

where v is the viscosity. 
In terms of the Lagrangian coordinate XE J” f(x, t) dx, the equation can be 

written in the form: 

ax v af -= _-- 
at fax' 

ax 1 
ax .f’ 
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The discretization of the equations in X yields the system of ODES, 

where vi = v(xi, fj). The function f is reconstructed according to J;: = const/(x,+ 1 - 
xi- 1) and x0 and xN+ 1 are determined by the boundary conditions. For periodic 
boundary conditions (period = 1) it is 

xg=xN- 1, 

x,+,=x,+1. 

For unbounded domain x,, and x,,, go to infinity, 

x0= -co, X .w+1= +a, 

and in the case of a boundary value problem they are given by Eq. (3.23) 
The Forward-Euler scheme relative to the system (4.4) is given by 

xy+l=x;+v; 
1 1 - 

x;-xy-, x’+l-x; > 
At. 

I I I I I I I 

I I I I I I I I 
-4. -3. -2. -1. 0. 1. 2. 3. 

x 

(4.5) 

(4.6) 

(4.7) 

7 0.6 

FIG. 1. Comparison between the exact (lines) and numerical (marks) solution for the diffusion 
equation at different times. The Forward-Euler scheme has been used with 40 particles and time step 
At = 0.001. The initial profile is gaussian. The output times are: c = 0, 0.25, 0.5, 1.0, 2.0, 4.0. 
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A stability analysis (see Section 5) shows that the scheme is stable if 

283 

(4.X) 

In Fig. 1 we compare the numerical results with the exact solution. The boundary 
conditions (4.6) have been used. The lines represent the exact solution, 

fb, t)= 1 
2Jrn 

at different values of the time. The marks are the computed solution, reconstructed 
according to (3.5), (3.11). We used the scheme (4.7) with the following values of the 
parameters: At = 0.001, N= 40, t, = 0.25, v = I. The output times are: t= 0, 0.25, 
0.5, 1, 2, 4. 

In Fig. 2 the stability condition is not satisfied in a part of the profile and 
oscillations develop. The continuous line is the exact solution and the dotte 
represents the numerical solution after 10 time steps. 

r- I I I / 7 ,,-- 0.‘7 

1 

0.6 

- 0.5 

1 0.4 

1 

-y 0.3 

FIG. 2. Instabilities developed near the top of the profile after 10 :ime steps, when stability condition 
is not satisfied. The time step is At = 0.0018 and min($-, - 27)’ = 0.001953; Y = 1. 
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In Fig. 3 the solution of the initial-boundary value problem (4. 
with 

.fo(x) = co(l -xl + Cl% g(t) = a, h(t) z b, 

s(x) =06(x - $), v = v(x) = v()( 1 + /lx) 

is shown. The parameters used in the calculations are: 

r 

f 

k 

co = 1.5, Cl =2, a= 3, b = 4, 

CT= 5, vg = 0.15, ,a= 10. 

, I I I I I I I I 

I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
x 

), (3.18)-(3.19) 

(4.9) 

6. 

5. 

4. 

3. 

2. 

1. 

0. 

FIG. 3. Initial-boundary value problem for the heat equation, with a source term and a non-constant 
conductivity. The initial profile is the straight line on the bottom of the figure. A localized source is put 
at x=0.5. The number of particles is proportional to the area below the profile and ranges from 18 
(initial condition) to 45 f or large time. The continuous line on the top is the stationary solution. The 
output times are: I =O, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8. 
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At is computed at each time step imposing the criteria that the sta 
be marginally satisfied. The number of particles varies from 18 to 45 and the 
numerical solution approaches the exact steady solution for large times. Wok that 
the stability restriction (4.8) ensures that at most one particle per time step is 
created or annihilated at each boundary. 

A fully implicit scheme for system (4.4), 

(4.10) 

requires the solution of a non-linear system at each time step. A scheme which is 
easier to handle is obtained from (4.10) with the replacement: 

The scheme reads: 

xy+l=x;+vy (4.1?) 

In the next section we shall prove that this scheme is unconditionally stable. Now 
we shall study the rate of convergence for this scheme as N-t 00. The error between 
the numerical solution and the exact solution is computed in the following way: Let 

We define the error E; as 

A-y = j’ f(x, t”) dx. 
-cc 

where Xi is the Lagrangian coordinate and does not depend on time. 
e compute s;t for various N and for a fixed time t. In Fig. 4 we pl 

E as a function of l/N2 in the case of the heat equation with unbound 
Here v = 1 and the initial condition is the gaussian: 

f(X, 0)=-L - x5’4 

2J;E 

The computation was performed up to a fixed time (t = I) and the equations of 
motion in the form (2.28)-(2.29) have been used, with q5 = (2/x)/(1 +x2) The 
scheme (4.11) with AZ = 0.0001 has been used. It is apparent that the scheme is 
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O.ZE-2 

E - - O.lXE-2 

- 0.16E.2 

- O.l4E-2 

- 0.12E-2 

- O.lE-2 

- O.SE-3 

- 0.6E-3 

- 0.4E-3 

- 0.2E-3 

0. O.lE-4 0.3E-4 0.5E-4 0.7E-4 0.9E-4 
0. 

l/N2 

FIG. 4. Rate of convergence of the numerical scheme for the diffusion equation inunbounded 
domain: Ed versus 1/N2. 

second-order accurate with respect to N, while it is first order in time, as expected. 
The order of accuracy in time depends on the scheme used for solving the ODES 
system (4.4). In the next section we shall make a theoretical analysis of the periodic 
case. 

5. THE DIFFUSION EQUATION: THEORETICAL RESULTS 

We shall discuss first the properties of the system of ODES obtained by the 
“space discretization” and then we shall study the stability and consistency proper- 
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ties of some simple numerical scheme. In the case v = 1 and for periodic boundary 
conditions the ODES system for the particles is 

1 1 
ijZ 

xi-xi-, xi+,-x,7 
i=I fv, 3 .‘.> (5.1) 

where 

XiE co, 11, i = 1, . ..) 1%: 

and 

x,=x,-l, 
(5.2) 

X N+l=Xj+l. 

The number of particles is obviously conserved. The lengths of the intesvais, 
yi = xi+, -xi, satisfy the system 

1 j;=?-L-- 
Yi Yi+1 Yi-1’ 

i = I, . . . . N, (5.3) 

where y, + ! = yr The following properties hold: 

(i) the minimum length of the intervals yi is a non-decreasing function of 
time; 

time. Oil th 
e maximum length of the intervals ,vi is a non-increasing function of 

iiii) th e uniform distribution, xi = i/N, i = 1, . ..) N, is a stable solution of (5.1). 

Pro@Y (i) and (ii). Let k and j denote the indices such that 

yk = min yi, 
l<fCN 

yj= max yf. 
I<i<N 

Then, from (5.3), Ijk 3 0, and jj< 0, therefore the shortest interval cannot decrease 
and the largest cannot increase. 

(iii) That the uniform distribution is 
to prove stability let us define an “energy”: 

Then 

a solution of (5.1) is evident. In order 

and, summing by parts, 
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because y, = y, and y1 = yN+ 1. This proves the stability of the uniform distribution 
and the uniqueness of the stationary solution (expressed in terms of y,). 

We shall consider now the problem of the consistency of the particle scheme with 
the original diffusion equation. 

Let x = 40(X, t) be the transformation which satisfies 

ax a ax -1 
at ax Z K ) 1 (5.6) 

(obtained from (4.2)-(4.3) for v = l), and let xi- &Xi, t). The discrete version of 
(5.6) is given by Eq. (5.1). For each point xi we define Ri as 

a 
K 

ax -1 
) 1 

1 1 -- 
ax ax =xi+l-xi-xi-xi--l 

-RRi. 
x=x, 

(5.7) 

We shall prove that, under regularity assumptions on the function f and its 
derivatives, the system (5.1) is consistent with Eq. (5.6) and the accuracy is second 
order in l/M. 

For simplicity we shall denote by a prime the differentiation with respect to X. 

THEOREM. Under the assumptions 

the estimate 

max lRil < 7 Cl6 
l<i<N 

$+L317$ 

holds, where X= fh f(x, t) dx. 

ProoJ: It is 

(5.9) 

(5.10) 
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where 

and 

AX-; lo1 so(x) dx 

From the Taylor expansion of q(X) it follows that 

and 

where, with an abuse of notation, qr - cp(t, t). It is X, ~, < <, c f < Xi+ 1. Substi- 
tuting (5.11) and (5.12) into (5.10) and making use of the theorem of the mean, it 
follows that 

where Xi- 1 <<-<Xi<<+ <Xi+i. 
The relations between the derivatives of y, and J’ are 

(p’=f-1, 

qv = -f-‘fy, 

~"'=3f-sf:-f-4fYx> 

cpC4)= -n5f-7f~+10f-6fxfxx-fS5fxxx. 

From (5.8) it follows: 

191 -=c c I l/so’1 < 6, 

W’l < c4, 

/q”‘I < 3c’+ cs, 

Icp(4)l < 26C”. 

(5.14) 

(5.15) 
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Using relation (5.15) we get the estimate: 

Ri< 

,yc16X2 13 17x3 
N”+;c $ (5.16) 

Q.E.D. 

We shall consider now some simple numerical scheme for the system (5.1). As we 
shall see, explicit schemes suffer a limitation on the time step due to stability 
conditions. This problem can be easily overcome with implicit or linearly implicit 
schemes. 

Let us consider first the Forward-Euler scheme: 

xy+L x:+At 
i 

1 - 
x;-xydl 

(5.17) 

We shall perform a linear stability analysis for this scheme. Let (J?:} and {xr } be 
two solutions of system (5.17). The linearized equation for the “error” el= x: - 2: 
is 

Equation (5.18) may be written in a vector form 

e n+l =A$‘, 

where, in the periodic case, A is the matrix 

and 

l-z,-z, z1 0 . . . 0 =N 

A= Zl l-z,-z, z2 ..’ 0 0 
. . . . . . . . . . . . . . . 

zN 0 0 . . . =N-1 1 -zN-l-z, 

zi ES At/(/;+ 1 - Z;)2. 

(5.18) 

(5.19) 

i 

(5.20) 

i 

(5.21) 

Because A is real and symmetric, the characteristic condition for stability states that 
all the eigenvalues should not exceed one: 

I& d 1, 

We shall prove the following: 

k = 1, . . . . N. (5.22) 
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THEOREM. If 

(5.23) 

then the scheme (5.17) is linearly stable. 

PvooJ The Gershgorin theorem [21] ensures that all eigenvalues of a matrix 
A = (a,-) are contained in the union of the discs, 

therefore the eigenvalues & have to satisfy one of the conditions: 

l~k-(l-Zi-Zj+I)/ <Zj+-z,,,; 

that is. 

l-2(z,+z,+,)6&d 1 

and, from condition (5.23), it follows that 

Figure 2 shows the behaviour of the solution in the region where condition (523) 
is not satisfied. Note that the instability is localized where the value of the function 
is large enough. This is typical of explicit schemes applied to a non-linear equation. 

Note the resemblance of condition (5.23) with the stability condition for the 
Forward-Euler scheme applied to the heat equation (4.1) with constant v [ZO, 
p. 121: 

vAt<&Ax2. 

Here Ax is the spatial step of the uniform Eulerian mesh. 
Consider now the implicit scheme for system (5.1): 

(5.25) 

We shall prove that such a scheme is unconditionally stable. We shall make use of 
the “maximum principle” [20]; that is we shall prove that for this system a discrete 
version of properties (i) and (ii) hold. 

Let j(n) and k(n) denote two indices such that 
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with y; =x1+ i - XT. The system satisfied by y; is derived from system (5.25): 

y;" = 
2 1 

~---- 
y;+l ye; 

(5.26) 

Let j= j(n + 1). Then 

y;+l-y; 2 1 1 

At 
- < 0, 

y;+’ y;‘; y,“;l’ 

and hence 

The proof that y;t: r) 3 y’&) is analogous. This proves the stability of the implicit 
scheme (5.25). As a corollary, it follows that the distance between the particles 
cannot shrink to zero, that is yr > 0, i = 1, . . . . N; y1= 0, 1, . . . . It is easy to prove that 
system (5.25) is energetically stable. We use again the energy definition (5.4): 

(5.27) 

It is 

G n+l-&n 

At 

yn- yl+' =r;, y:'+'y:lAt I I 

where z; E l/y: and (5.26) has been used. Adding and subtracting the same term we 
have 

&n+l-&n 

At 
= i (z;-z;+‘)(z;~1’-2z;+‘+z;3 

i=l 

Making use of (5.26) in the first term, summing by parts the second and using 
periodic conditions (5.2) we obtain 
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& n+l -6” 1 i (;;-;;+‘)2 
At = -drj=, 

- ; (z~+l-z~z-:)2(;:+~+z.ili$o. (5.28) 
i= 1 

where zn = zn 

With ‘the &e of the maximum principle it is easy to prove the stability of I 
hnearly implicit scheme (4.11). 

6. OTHER EXAMPLES 

Muster Equation 

This equation can be considered as a special kinetic equation with a linear 
integral collisional operator, in which the kernel represents the differential cross 
section between the particles and a known background. The equation is given by 

We applied our method to this equation and derived the following equations of 
motion for the points, 

ii= - Xj+lpXi-l N 
2 

1 [S(x,, xjci)- C(x,) N(x;-Xxi)] s G,, 
j=l 

where 

C(x) = J +cc Q(x, x’) dx’, 
-cc 

X>Q 

x=8 

x < 0. 

the case of a periodic domain [O, 2711, with 

Q(x, x’) = 1 + cos(x - x’), 

fo(x) = (1 + A cos X)/(2X), 

(6.4) 

(6.5) 
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and the comparison with the exact solutionis shown in Fig. 5. The lines represent 
the exact solution, 

f(x, t) = (1 + AeC”’ cos x)/(27r) 

at different times. The marks represent the numerical solution. The equations in the 
form (2.28)-(2.29) have been used, with 4 = 1/(27r). A Forward-Euler discretization 
in time has been used with At = 0.001. The function has been reconstructed by a 
fourth-order scheme: 

/ I I I I I I 

0. 1. 2. 3. 4. 5. 6 

x 

FIG. 5. Master equation on a periodic domain. Comparison between the exact solution (lines) and 
the numerical solution (marks) for different times. A Forward-Euler scheme has been used with 40 
particles and dr=O.OOl. The output times are: t =0, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0. 
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Several runs have been made with different numbers of particles and time steps. T 
error 

El(l) =; .i !fGL t) -fifi(f)l, (6.7) 
t=l 

has been computed at a fixed time t=0.2 and plotted versus l/N’ for various 
values of At (see Fig. 6), confirming that the rate of convergence is second order in 
l/N (and, of course, first order in time). 

0.6E-3 

OSE-3 

0.4E-3 

0.2E-3 

O.lE-3 

0. 
3 

FIG. 6. Rate of convergence of the scheme for the Master equation. Error versus (27r/N)’ for different 
time steps. 

58i:87i2-4 



296 G. RUSSO 

Kac Equation 

This is a one-dimensional model for a Boltzmann equation: 

$=j:,” dy j”;“g CfW, t)f(v’, f) -l-(x, t)f(y, t)l dx’ W, (6.8) 

x’ = x cos 8 + y sin 8, 

y’ = -x sin 0 + y cos 0. 
(6.9) 

We can interpret this equation in the following way: given two “particles” with 
coordinates x’ and y’, they are “rotated,” in the phase plane x - y, by a collision 
through an angle 19, which is uniformly distributed. Then the probability density as 
a function of the rotation angle is 

P@(e) = 1/2X (6.10) 

and, in the coordinate of a particle, 

i 

0 if 1x1 >R 

P,(x; R) = 

xJ& 

(6.11) 

if Ixl<R 

where R2 = x’* + Y’~. 
With this in mind, the collisional operator applied to a set of N particles with 

coordinates xi, j= 1, . . . . N, becomes 

Uc,v,l = j$ c f’,(x; R,) (6.12) 
‘.I 

with Rf = x: + x/‘. The equations of motion are given by 

i,= ~(Xi+l-Xi-l) 
I 2N 1 J‘*' PAxi Rjk) dx. 

jk --03 

(6.13) 

The system has been solved numerically with a Forward-Euler time discretization 
scheme. The initial condition is the bi-modal distribution 

The solution relaxes to the steady gaussian: 

f(x,m)=($-)“‘exp(-$). 
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The result is shown in Fig. 7, where 64 particles have been used. Note that the 
solution at t = 15 practically coincides with the stationary solution. 

ode1 Fokker-Planck Equation 

e consider a simplified one-dimensional model for the Fokker- 
tion: 

f(& 0) =fo(x). 

The equations of motion are given by 

I 1 
iiT -2x,. (6.15) 

xi- xj- 1 xi+l-xz 

We use a semi-implicit first-order time discretization, with A2 = 0.002. The initial 

conditions are 

FIG. 7. Numerical solution of the Kac equation. A Forward-Euler scheme has been used with 
IV’= 04 and Af =O.l and A =0.9. The output times are: t = 0, 0.5, 1, 2, 5, 15. 



298 G. RUSSO 

, I 0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

I I I I I 1 0. 
-3. -2. -1. 0. 1. 2. 3. 

x 

FIG. 8. Numerical solution of the model Fokker-Planck equation; 24 particles have been used. 
dt=0.002. The output times are: t=O, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 3. 

The results are shown in Fig. 8, where the asymptotic solution is the gaussian 
U/J3 exp( -x2>. 

7. CONCLUSIONS 

The method presented is an extension of usual particle methods and is suitable 
to treat a collisional term on the right-hand side of a kinetic equation. The density 
function is approximated by a set of “particles,” suitably distributed in the phase 
space. The equations of motion of these particles are the usual dynamic equations 
of the collisionless case plus an additional term which describes the collisions. Note 
that there is no abrupt change in the position and velocity of the “particles” due to 
collisions, as in Monte Carlo simulations. 

The technique can handle both differential and integral operators. It can be used 
also for non-linear integral operators, as in the Boltzmann equation. The difference 
in the various cases essentially consists in the number of operations required per 
time step. In a space homogeneous case the complexity is O(N) for the diffusion 
equation, O(N2) for a linear collisional operator, and O(N3) for a quadratic 
integral operator. This disadvantage is compensated by the accuracy that can be 
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reached by this method. In one dimension second-order schemes are easily derived. 
In this paper we described the general characteristics of the method and devise 
numerical schemes for the one-dimensional, space-horno~~~eo~s case. are 
presently working on multi-dimensional codes, both space-homogene and 
non-homogeneous. 

The main diffkulty in the multi-dimensional case is the reconstruction of the 
at each particle location at each time step. Tnis is equivalent to 
point of a set the value of the local “‘density” of the points. To 

ere is no satisfactory way to compute this term in a fast and 
in more than one dimension. 

technique applied to the diffusion equation leads to many interesting er- 
ties that we briefly mention and that we hope to develop further. 

(i) The use of the Lagrangian coordinate shows the eq~iva~e~~e between the 
usual diffusion equation and the quasi-linear diffusion equation: 

-=FL&Q!Y, aF d2F ar 
at ax2 at a2 

ere F(X, t)=f(x, t) and X=Jr,f(v, t)dy. 

(ii) The particle solution of the heat equation can be used to distri 
particles according to a given function. 

(iii) It can be used to define a “canonical” transformation from a uniform 
distribution to a given distribution. 

(iv) It is a deterministic way to introduce diffusion within a particle scheme. 
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